A Novel Multi-Objective Optimal Approach for Wind Power Interval Prediction
نویسندگان
چکیده
Numerous studies on wind power forecasting show that random errors found in the prediction results cause uncertainty in wind power prediction and cannot be solved effectively using conventional point prediction methods. In contrast, interval prediction is gaining increasing attention as an effective approach as it can describe the uncertainty of wind power. A wind power interval forecasting approach is proposed in this article. First, the original wind power series is decomposed into a series of subseries using variational mode decomposition (VMD); second, the prediction model is established through kernel extreme learning machine (KELM). Three indices are taken into account in a novel objective function, and the improved artificial bee colony algorithm (IABC) is used to search for the best wind power intervals. Finally, when compared with other competitive methods, the simulation results show that the proposed approach has much better performance.
منابع مشابه
Optimal Locating and Sizing of Unified Power Quality Conditioner- phase Angle Control for Reactive Power Compensation in Radial Distribution Network with Wind Generation
In this article, a multi-objective planning is demonstrated for reactive power compensation in radial distribution networks with wind generation via unified power quality conditioner (UPQC). UPQC model, based on phase angle control (PAC), is used. In presented method, optimal locating of UPQC-PAC is done by simultaneous minimizing of objective functions such as: grid power loss, percentage of n...
متن کاملWind Turbine Transformer Optimum Design Assuming a 3D Wound Core
A wind turbine transformer (WTT) is designed using a 3D wound core while the transformer’s total owning cost (TOC) and its inrush current performance realized as the two objective functions in a multi-objective optimization process. Multi-objective genetic algorithm is utilized to derive Pareto optimal solutions. The effects of inrush current improvement on other operating and design parameters...
متن کاملNovel Hybrid Fuzzy-Intelligent Water Drops Approach for Optimal Feeder Multi Objective Reconfiguration by Considering Multiple-Distributed Generation
This paper presents a new hybrid method for optimal multi-objective reconfiguration in a distribution feeder in addition to determining the optimal size and location of multiple-Distributed Generation (DG). The purposes of this research are mitigation of losses, improving the voltage profile and equalizing the feeder load balancing in distribution systems. To reduce the search space, the improv...
متن کاملA SAIWD-Based Approach for Simultaneous Reconfiguration and Optimal Siting and Sizing of Wind Turbines and DVR units in Distribution Systems
In this paper, a combination of simulated annealing (SA) and intelligent water drops (IWD) algorithm is used to solve the nonlinear/complex problem of simultaneous reconfiguration with optimal allocation (size and location) of wind turbine (WT) as a distributed generation (DG) and dynamic voltage restorer (DVR) as a distributed flexible AC transmission systems (DFACT) unit in a distribution sys...
متن کاملA Multi-Objective Economic Load Dispatch Considering Accessibility of Wind Power with Here-And-Now Approach
The major problem of wind turbines is the great variability of wind power production. The dynamic change of the wind speed returns the quantity of the power injected to networks. Therefore, wind–thermal generation scheduling problem plays a key role to implement clean power producers in a competitive environment. In deregulated power systems, the scheduling problem has various objectives than i...
متن کامل